On the Ranks and Border Ranks of Symmetric Tensors
نویسندگان
چکیده
Motivated by questions arising in signal processing, computational complexity, and other areas, we study the ranks and border ranks of symmetric tensors using geometric methods. We provide improved lower bounds for the rank of a symmetric tensor (i.e., a homogeneous polynomial) obtained by considering the singularities of the hypersurface defined by the polynomial. We obtain normal forms for polynomials of border rank up to five, and compute or bound the ranks of several classes of polynomials, including monomials, the determinant, and the permanent.
منابع مشابه
A Comparison of Different Notions of Ranks of Symmetric Tensors
We introduce various notions of rank for a high order symmetric tensor, namely: rank, border rank, catalecticant rank, generalized rank, scheme length, border scheme length, extension rank and smoothable rank. We analyze the stratification induced by these ranks. The mutual relations between these stratifications, allow us to describe the hierarchy among all the ranks. We show that strict inequ...
متن کاملBorder Ranks of Monomials
Young flattenings, introduced by Landsberg and Ottaviani, give determinantal equations for secant varieties and provide lower bounds for border ranks of tensors. We find special monomial-optimal Young flattenings that provide the best possible lower bound for all monomials up to degree 6. For degree 7 and higher these flattenings no longer suffice for all monomials. To overcome this problem we ...
متن کاملNew Ranks for Even-Order Tensors and Their Applications in Low-Rank Tensor Optimization
In this paper, we propose three new tensor decompositions for even-order tensors corresponding respectively to the rank-one decompositions of some unfolded matrices. Consequently such new decompositions lead to three new notions of (even-order) tensor ranks, to be called the M-rank, the symmetric M-rank, and the strongly symmetric M-rank in this paper. We discuss the bounds between these new te...
متن کاملGeometric lower bounds for generalized ranks
We revisit a geometric lower bound for Waring rank of polynomials (symmetric rank of symmetric tensors) of [LT10] and generalize it to a lower bound for rank with respect to arbitrary varieties, improving the bound given by the “non-Abelian” catalecticants recently introduced by Landsberg and Ottaviani. This is applied to give lower bounds for ranks of multihomogeneous polynomials (partially sy...
متن کاملfree gauge theories of traceless symmetric tensors
Point particle in general background fields vs. free gauge theories of traceless symmetric tensors Abstract Point particle may interact to traceless symmetric tensors of arbitrary rank. Free gauge theories of traceless symmetric tensors are constructed, that provides a possibility for a new type of interactions, when particles exchange by those gauge fields. The gauge theories are parameterized...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Foundations of Computational Mathematics
دوره 10 شماره
صفحات -
تاریخ انتشار 2010